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Equating Parameter Estimates from the GGUM 2
Abstract
Three common methods for equating parameter estimates from binary item response theory

models are extended to the generalized graded unfolding model (GGUM). The GGUM is an
item response model in which single-peaked, nonmonotonic expected value functions are
implemented for polytomous responses. GGUM parameter estimates are equated using extended
versions of the mean-sigma, mean-mean, and item characteristic curve methods. The former
two methods are implemented using two different strategies based on alternative
parameterizations of the GGUM. All of these methods attempt to estimate a scale constant (A)
and a location constant (B) that can equate the metric of item response model parameters derived
from separate calibrations. A small simulation is performed to provide preliminary information
about the characteristics of the alternative equating methods s:tudied. The item characteristic
curve method performed best with regard to the‘ mean squared error, bias, and standard error of
equating constant estimates as well as the absence of extremely deviant estimates. It was noted
that although the average superiority of estimates produced by the item characteristic curve
method was quite small, substantial outliers sometimes emerged when estimating equating
constants with other methods. Consequently, the item characteristic curve method is
recommended as a means to develop estimates of equating constants in the GGUM. Key Words:

GGUM, generalized graded unfolding model, equating, linking, item response theory, unfolding,

characteristic curve, mean-sigma, mean-mean
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The generalized graded unfolding model (GGUM; Roberts, Donoghue & Laughlin, 2000) is a
unidimensional, parametric, item response theory model that is applicable to either binary or
polytomous responses that follow from a proximity relatioﬁ (Coombs, 1964). A proximity-based
response process is one in which an individual is expected to obtain higher item scores to the
extent that the individual is located close to a given item on an underlying latent continuum.

This notion is consistent with traditional attitude measurement applications where respondents
are asked to indicate their level of disagreement or agreement with each statement on an attitude
questionnaire (Roberts, Laughlin, & Wedell, 1999). It is also generally implied when measuring
preferences (DeSarbo & Hoffman, 1987) and certain developmental processes in which particular
cognition; ;)r behaviors occur in distinct stages (Noel, 1999). The remainder of this paper will
presume an attitude measurement context. ’

The GGUM is an item response theory (IRT) model, and as such, it provides a means to
develop large item banks from multiple attitude questionnaires which might subsequently be
used as tk;e foundation for computerized adaptive attitude asses;fnents (Roberts, Lin & Laughlin,
2001). Tfle IRT framework also enables one ta examine if and how an attitude item functions
differently in alternative subpopulations. These applications presuppose that characteristics of
attitude items derived from separate calibrations can be expressed on a common metric.
Therefore, a reliable means to equate GGUM parameter estimates across multiple calibrations is
required before such applications are possible.

The GGUM is consistent with a proximity-based response process, and thus, it yields item

characteristic curves that are single-peaked and nonmonotonic. These nonmonotonic item

characteristics lead to a test characteristic function which is not a one-to-one function of the
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latent trait. Consequently, equating strategies based on raw test scores (e.g., equipercentile
equating or linear equating based) are not appropriate in this case because most raw test scores
are associated with at least two or more points on the latent continuum. Fortunately, the GGUM
provides a means to equate tests from an IRT perspective which logically incorporates this
nonmonotonic relatiopship between item responses and the latent trait.

The GGUM is defined by its category probability function which is equal to:

exp{(x,. (z(6,-3) - Zz: Tl ) + exp((x,. [((M-2)(6,-8) - :ZO Tl )
= - ’ 1)

C w
Zlexp{ o [w(6,-3) - Zrlk )+exp{ o, [(M-w)(6;-3) —kzotik])} _

P[Z=z|6,,0,0,,7,]=

i i Vik

w=0

where: Z, = an observable response to statement (item) 7,

z=0,1,2,..,C;z=0 corresponds to the strongest level of disagreement and z = C

refers to the strongest level of agreement,

6, = the location of the j¢h individual on the latent continuum,

0, = the location of the izh item on the latent continuum,

o; = the discrimination of the ith item,

T;, = the kzh subjective category threshold parameter associated with the ith itém,

C = the number of observable response categories minus 1, and

M=2*C+1.
From an IRT perspective, if responses to two sets of test items are analyzed separately using two
GGUMs, .then test equating is simply a matter of placing the parameter estimates from the two

calibrations onto a common metric. Several methods have been suggested to establish a common
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metric for item response models with monotonic item characteristics. This paper will extend
some of the more popular equating strategies for monotonic models to the GGUM and provide
preliminary information about the adequacy of each strategy.
Linear Indeterminacy of GGUM Parameter Estimates
The GGUM yields response probabilities that are invariant with respect to the unit and origin

of the latent continuum. Consequently:

P[Z=210;,e,,8,,%,]=PlZ=2|0, 0,8 , 7], )
where:

B;:ABJ,+B, 3)

. .

« ==, | @
d =43 +B, | %
and

T =AT, . | . (6)

In order to remove this linear indeterminacy during parameter estimation, the A and B constants
are fixed to some arbitrary values. For example, the GGUM2000 estimation software uses an |
N(0,1) prior distribution for 6 which consequently constrains the unit and origin of the latent
continuum.

Equating GGUM parameter estimates is a matter of choosing equating constants, A and B, -
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that transform the metric associated with one set of parameter estimates to the target metric of
another set of estimates. The methods of estimating equating constants presented in this paper
presume that there are common test items among the multiple forms to be equated.
Consequently, the methods are appropriate for two basic types of designs. In a multiple-group,
common-form design, two or more groups of respondents receive the same test form. However,
the researcher, by choice or circumstance, calibrates the responses from each group separately.
In this situation, the metric of the GGUM parameter estimates will be different to the extent that
the multiple groups of respondents have different O distributions. In the multiple-group,
multiple-form, anchor-item design, two or more groups of respondents receive alternative forms
of a test, but pairs of forms are related to each other through a set of common items (i.€., anchor

items). The common feature of both equating designs is that either the entire test form or some

subset of test items is identical for two or more respondent groups in a given application.

Extending Some Common IRT Equating Metho.ds to the GGUM

The Mean-Sigma Method |

Marco (1977) introduced the mean-sigma method of equating IRT parameter estimates in the
3-parameter logisfic model. This method can be extended to the GGUM as follows. Let 81., | be
the item location estimate for the ith common item from the first calibration. Similarly, let 8‘.’ s
be the item location estimate for the ith common item from the second calibration. Suppose the
goal of the equating procedure is to transform the metric of the GGUM parameter estimates from
the second calibration to that for the first calibration. The equating constants can be estimated

from the means and standard deviations of the item location estimates as follows:
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132"31',1"S_"I i2 0 @)
8[.2
and
R Ss_ .
A=—, 8)
SSI',Z

~

where 5I. , and 8{ , are the means of the item location estimates for the first and second
calibrations, respectively; and sg  and s; | are the corresponding standard deviations. With
i1 i,

these equating constants estimated, the transformed parameters can be obtained using the

following formulae:

0 5 =—=, . . 9
2 )
81 21=/isi,2+é ) (10)
e =A% (11)

and
0,,=46 ,+58, @
where & 515 81.'21 s Tik. 21 and éjZ’ZIdenote the parameter estimates from the second calibration

after they have been transformed to the metric of those from the first calibration.
One characteristic of the equating constants estimated with Equations 7 and 8 is that they
ignore information contained in all parameter estimates other than Si. An alternative extension

of the method can be constructed that takes information about both 8, and £, into account,

ERIC 8
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Specifically, the GGUM can be re-expressed as:

z M-z)
exp ( o X(; (0,-€;) ] + exp [ o g 0,-€,) )

P[Z=2]0 ,0 € ]=
[ i Zl j’al’gls] c w (M-w) ’ (13)
Z exp aiz ((‘)j—ﬁ,-s) teXp| & (ej—gis)
w=0 s=0 §=
where
s =0, Ty (14)
and
T = T » Jor s=k<C, ’ (15)
T,,=0, for s=C+1, . (16)
and
Tis = —Tl'(M—ﬁl) > for s>C+1 > | (17)

due to the assumption of symmetric subjective response category thresholds (Roberts, Donoghue
0
& Laughlin, 2000). Note that in Equation 13, £;,=0 and 3, (®,-€,)=0by definition. These
k=0
constraints imply that there are C+1 estimable ;; parameters; namely &, ..., & c+1)- The

estimable £, parameters can be used to develop equating constants with the mean-sigma

procedure:
B‘ _E Sei:.l E
~ 5,1 - is,2 °? (18)
sgn.z
and
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s

A‘ is, 1

) (19)
sEi:. 2

where the means and standard deviations are taken across all estimable §; in a given calibration.
These constants can then be used to rescale the original parameters from the second calibration as
indicated in Equations 9 through 12. Alternatively, Equations 9 and 12 can be used in
conjunction with the following formula to rescale parameters using the &; i parameterization:

bon=48,,+B . (20)
Although this formulation of the mear;éigma method includes information about both 8;‘ and
%, the former estimates are generally estimated more accurately than the latter (Roberts,
Donoghue, & Laughlin, 2001). Therefore, it remains to be seen which version of the mean- -
sigma technique yields more accurate or more stable estimates of equating constants.

The Mea?-Mean Method
Loyd and Hoover (1980) introduced the mean-mean method of estimating equating constants

in the context of the 1-parameter logistic model. The mean-mean method can be extended to the

GGUM as follows:
~ ~ &-i 2 ~
B = 61.’1 - T_, 6‘.,2 5 - (21)
&
and
~ -&-i 2
&, :

10
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This formulation uses information about both 8;‘ and &;, and one would generally expect that this
added source of information would help better represent the metric difference between the two
calibrations. Another potential advantage of this method is that, unlike the mean-sigma
approach, the mean-mean technique involves only means of parameter estimates, and means of
parameter estimates may be more robust to outliers than standard deviations (Baker & Al-
Karni, 1991). However, Roberts et al. (2001) have shown that o are more difficult to estimate
than &, so the advantage of including information about mean &, could potentially be
outweighed by estimation error.

The mean-mean method formulation above can be easily adapted to incorporate information
about all item parameter estimates. If the GGUM is parameterized using Equation 13, then an

-

estimate of B can be obtained from:;

>
|
R

G2l @
, 1

o]
n
o
1

Rad

Note that the estimate of A is still derived using Equation 22. This formulation inpludes
-information about all item parameters, but it is not clear that inclusion of these parameters will
increase the accuracy of the equating constant estimates given that both t,, and «; are generally
more difficult to estimate than &, (Roberts, et al, 2001).
Characteristic Curve Methods

A variety of characteristic curve methods have been proposed for monotonic models in the
IRT literature. These methods attempt to find the equating constants that minimize discrepancies

between characteristic curves developed from items that are common across two calibrations.

11
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This presumably leads to more accurate estimates because deviant estimates have relatively less
impact on the results as compared to procedures that incorporate only summary measures of item
parameter distributions corresponding to the common items (Baker & Al-Karni, 1991; Stocking
& Lord, 1983). Characteristic curve methods differ in the specific type of curves that are
contrasted. Differences between test (Stocking & Lord, 1983; Baker, 1992), item (Haebara,
1980) and category (Baker, 1993) characteristic curves have been proposed for alternative
monotonic IRT models. Haebara’s (1980) item characteristic curve method is especially
attractive because it produces symmetric results when the target metric is that for the second )
calibration rather than the ﬁrst.- It is also unique in that it explicitly incorporates information
about the distributions of éfl 0 and 6}.2 P when evaluating differences between characteristic
curves. ,

Haebara originally proposed the item characteristic curve method for the 3-parameter logistic
model. It can be extended to the GGUM as follows. Let E; 1(61.1 /1) be the expected value of the

ith common item from the first calibration given the j,th individual’s latent trait estimate derived

in that calibration:

c
E,.’l(éjl’l):E zP[Zi=z|éj1’1,6L & 1o 8] - _ } (24)

z=0

i,1?

Similarly, let E; 2(9}.2 , ) be the expected value of the ith common item from the second
calibration given the j,th individual’s latent trait estimate derived in that calibration. Let
E, (6 ., 21) denote the expected value of the ith common item from the first calibration given

the j,th individual’s transformed latent trait estimate. The transformation takes the individual’s

12
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trait estimate from the second calibration and rescales it to the metric of the first:

6,,=46, ,+B. (25)

In an analogous fashion, let E, z(éj 1, ) denote the expected value of the ith common item from
» 1°»
the second calibration given the j,th individual’s transformed latent trait estimate. This

transformation is given by:

6 -8B
R/ CLE (26)
jl,lz A

Note that if there were 1) no sampling error, 2) no differential item functioning, and 3) perfect fit
of the GGUM to the data in each calibration, then values of A and B could be found to make the

following identity hold for all i, j,, and j,:
Ei,2(6j2,2) - Ei,l(éjz,Zl ) = Ei, 1(61‘1,1 ) - Ei,z(éjl,lz) =0. (27)

However, under less idealistic circumstances, this identity will not hold. Instead, estimates of A

and B are developed to minimize the following loss function:

) J)

I
0= 12 [E,.,z(éjz,z)—E,.,l( 21)] +Z [E,.,l(éjl,l)—E,.,z(éjhu)]z]_ - (28) -

i=1 | jp=1 Jr1=
The values of 4 and B are calculated by solving the following system of equations:

Ly, 29)

13
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99 _
A 0. (30)

The solution can be found using the Newton-Raphson procedure in which the estimates are

updated iteratively. On iteration ¢ + /, the estimates are calculated using the following formula:

o s

B Al -[p 4] -|0Q Q]| BT oBoA - a1
el ‘ [oB 394 |,| %0 %0
0408 942 |,

The derivatives required to solve Equation 31 are given in the appendix.

Simulation Study -

The forgoing methods of estimating equating constants have not yet been investigated in the
context of the GGUM. Therefore, a small simulation study was conducted to provide
preliminary information about the relative performance of each method. The goal of this study
was to determiné if any of these methods produced substantially different estimates than their
counterparts under a limited number of simulated conditions.

Method
Design

The simulation was based on a 2 (equating condition) x 2 (sample size)'factorial design. In
each cell of the design, responses to 20 polytomous (6-category) items were generated for two
groups of subjects based on Equation 1. Parameter estimates were calibrated separately for each

group using GGUM?2000 software (Roberts, 2001). Solutions were derived using an N(0,1)

14
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prior distribution for 6, 30 quadrature points, and a convergence criterion of .001. The resulting
parameter estimates for the second group were equated to those for the first group using the
mean-sigma method based on Si (MS1), the mean-sigma rﬁethod based on Eis(MSZ), the mean-
mean method based on Si (MM1), the mean-mean method based on 21.5(1\/[1\/[2), and the item
characteristic curve method (ICC). This process of generating responses, estimating GGUM
parameters and estimating equating constants was replicated 30 times in each cell of the design.
Item Characteristics

True item parameter values used in this simulation were similar to those found in feal data.
The true , for the 20 items were randomly sampled from a uniform distribution ranging from
(-2, +2). True o; were randomly sampled from a uniform distribution on the interval of (.5, 2).
Threshold parameters (t;,) corresponding to a 6-category resl;onse were generated independently
for each item. For a given item, the true t; . parameter was generated frqm a uniform (-1.4, -.4)

distribution. Successive true T;, parameters were then generated with the following recursive

equation:

T =T, —25+e ., fork= 2,3,....C (32)

ik-1 7N
where ¢;, ; denotes a random error term generated from a N(0, .04) distribution. The fik
parameters derived with this formula were not necessarily ordered across the continuum within
an item.

The true item parameters were independently sampled on every replication in each condition.
However, these parameters were held constant for the two groups of responses simulated on each

replication. Therefore, the simulation was consistent with a situation in which parameter

19
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estimates from a common form were equated across two calibrations. It was also similar to a 2-
group, 2-form, anchor item equating situation in which 20 anchor items were used. (However,
one would generally expect more precise estimates of 6, in fhe latter situation due to the larger
number of total test items.)
Equating Conditions

The simulated equating condition was either a horizontal or vertical equating scenario. In the
horizontal condition, true 6 values were normally distributed with X =0and s =1inboth |
respondent groups. Consecjuently, the true values for A and B were 1 and 0, respectively, in the
horizontal equating condition. In the vertical equating condition, true 6 values were normally
distributed with X = 0 and s =1 in the first respondent group, and they were normally distributed
with X = .5 and s = 1.25 in the second respondent group. Gi\;en that an N(0,1) prior distribution.
for 6 was used to estimate parameters in both groups, the origin and scale of parameter estimates
frqm the second respondent group were translated to those of the prior diétribution, whereas the
origin a_nd scale of parameter estimates from the first respondent group remained unchanged.
Consequently, the true values of A and B in the vertical equating condition equaled 1.25 and .5,

respectively, and these values served to reestablish the original metric of parameters in the

second respondent group.

| Sample Size

Responses from either 300 or 1000 simulees were used in each calibration. Recovery
simulations by Roberts et al. (2001) have suggested that approximately 750 respondents may be
required to produce very accurate GGUM item parameter estimates when 15 to 20 uniformly-

spaced items with six response categories per item are used. Therefore, the 1000 simulee

16
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condition was thought to represent a satisfactory sample size. Roberts et al. have also shown that
300 respondents can lead to GGUM estimates with noticeably lower levels of accuracy.
Consequently, the 300 simulee condition was expected to produce estimates with substantially
larger amounts of error with a higher potential for outliers.

Analysis of Simulation Results

The adequacy of each equating constant estimation method was assessed by studying the
mean squared error associated with the corresponding estimates. Specifically, the squared
difference (i.e., squared error) between an estimated constant and its true value was calculated for
each 4 and B produced with a particular estimation method. There were 30 squared error scores
associated with a given type of estimate in each cell of the simulation design. Differences in
mean squared error scores for B were analyzed using a 2 (eql;ating condition) x 2 (sample size) x
5 (estimation mefhod) split-plot analysis of variance (ANOVA). The first two factors in this
analysis were between-replication factors whereas the third was a within-replication factor. A
similar analysis was run for /I although the MM2 estimates were not used because they were
mathematically identical to the MM estimates. Therefore, only 4 levels of the within-
replication factor were present in the analysis of 4. The Type I error rate used in each ANOVA
was set at .025 to control for the féct that two dependent measures were studied using the same
analytical design. Probabilities associated with tests of within-replication effects were corrected
with the Huynh-Felt procedure. The proportion of total between-replication variance attributable
to each between-replication effect in a given ANOVA (i.e., * ) was calculated. A similar
quantity was also calculated for all within-replication effects based only on the total within-

replication variance.

1%
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Descriptive analyses were performed to supplement the primary analysis of squared error.
Specifically, the empirical bias and the standard error inherent in each type of estimate was
examined. A graphical analysis of the variability in the estimates under each simulation
condition was also conducted.
Results
Mean Squared Error
The ANOVA on the squared error associated with 4 revealed statistically significant main

effects of sample size (F (1, 116)=21.22, MSe=.0001, p=.0001; 1’=.147) and estimation method
(F (3, 348)=13.§7, MS§e=.0001, p,gsiea = -0001; 1?=.096), and an interaction between sample size
and estimation method (F (3, 348)=10.66, MSe=.0001, p,s.s = -0001; 11>=.073). The main
effect of sample size was in the expected direction with slightiy larger mean squared error
occurring with the smaller sample size. These mean differences were confined to the third
decimal place (.006 versus .001). The main effect of estimation method was due to the fact that
the ICC method produced the smallest mean squared error (.0003), followed by the MM 1 method
(.001), and the MS1 and MS2 methods (.004 and .005). These mean differences were, again,
confined té the third decimal place and were, thus, quite small. The top panel of Figure 1
illustrates the interaction between sﬁmple size and estimation method for 4. The mean squared
error was generally small and similar for all estimation methods when the sample size was equal
to 1000. However, when the sample size was equal to 300, the mean squared error in A
increased for all metho_ds. Post-hoc comparisons showed that these differences were statistically

significant for all estimation methods, although they were smallest for the ICC and most

noticeable for MS2 and MS1.

18
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Insert Figure 1 About Here

The ANOV A on squared error for B revealed statistically significant effects for all between-
replication factors. The main effect of equating condition (F (1, 116)=14.39, MSe=.0002,
p=.0002; n?=.093) was due to' a slightly higher mean squared error in estimates derived in the
vertical equating scenario (.006 versus .002). The main effect of sample size (¥ (1, 116)=17.45,
MSe=.0002, p=.0001; n>=.113) was such that slightly higher mean squared errors were found for
the smaller sample (.006 versus .001). The interaction of these factors (# (1,116)=6.69,
MSe=.0002, p=.0109; 1>=.043) suggested that the mean squared error was relatively high (.010)
when vertical equating was performed and the sample size was small. The mean squared error -
obtained in the remaining betwéen—replication conditions was consistently smaller (i.e., between
.001 and .003). |

There were also reliable within-replication effects for squared errors of B. Inparticular, there
was a statistically significant main effect of estimation method (¥ (4, 464)=8.02, MSe=.0001,
Dadjusiea —0003; n?=.061). The mean squared error values corresponding to this main §ffect were
equal to .001 for ICC, .003 for MS1, .003 for MM1, .004 for MS2, and .007 for MM2. A post-
hoc analysis showed that the ICC method produced a statistically smaller mean squared error
than did the MS2 and MM2 methods. Additionally, the MM2 method produced a slightly larger
degree of error than did the MM procedure. The interaction of sample size and estimation

method was also statistically significant (F (4, 464)=3.77, MSe=.0001, P ,y,sea =-0207; 1°=.029).

19
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The lower panel of Figure 1 shows the cell means corresponding to this interaction. The mean
square error was consistently la{rger when the sample size was 300. However, this was especially

true for the MM?2 and MS2 methods.

Insert Table 1 About Here

Empirical Bias and Standard Deviation of Estimates

The means and standard deviations of 4 and B across the 30 replications are given in Table
1 for each simulated condition. The empirical bias in A was typically negligible and
unsystematic with the largest discrepancy of -.036 occurring for the MS2 method in the vertical
equating coﬁdition with 300 simulees. The standard deviatio;l of 4 was smallést for the ICC
miethod across all conditions, and it was generally largest for the MS1 and MS2 methods. These
differences in standard errors were more apparent in the small sample size conditions.

The empirical bias in B was geﬁerally negligible in the horizontal equating conditions. The
largest degree of bias in these conditions occurred for the MS2 method when the sample size was
small, in which case, the bias was pnly .014. Noticeably more bias in ﬁ occurred in the vertical
equating conditions; e.specially when the sample size was small. Across these conditions, the
degree of bias observed for the ICC and MS2 methods was slightly less than that seen with the
other methods. The standard error in B estimates was consistently smallest for the ICC method '

and largest for the MM2 procedure. Again, these differences were more apparent in the small

sample size condition.
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Graphical Analysis of Estimates

Figures 2 and 3 illustrate the estimates of A and B obtained with each method on every
replication of the simulation. Figure 2 gives a scatterplot of the A separately for each simulation
condition. The horizontal line drawn on each scatterplot represents the true value of 4 in the
given condition. As shown in Figure 2, the variability in the 4 values was relatively greater in
the small sample conditions. The increased variability induced by small calibration samples was
particularly evident in the vertical equating condition. More importantly , the scatterplot
empbhasizes that although average measures of estimation accuracy reported in previous sections
generally suggested only minor differences between estimates produced by alternative methods,

substantial differences among estimates emerged on several replications. When such differences

occurred, it was generally the case that the MS1 and MS2 estimates of A were the most disparate.

Insert Figures 2 and 3 Here

Figure 3 provides a scatterplot of B values by replication for each simulated condition. Thé
figure illustrates the increased variability in B values reported previously for vertical _equating. It
also depicts the increased variability associated with smaller calibration samples as well as the
multiplicative effect of small samples in a vertical equating scenario. .Again, the scatterplot
shows that substantial differences did emerge occasionally among the B values produced by
alternative methods. Such differences occurred even in the large sample conditions, albeit much

less frequently. Furthermore, when large discrepancies occurred among the alternative estimates,

21
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it was generally the case that the MM2 method produced the most aberrant B.
Discussion

The foregoing results suggest that with large calibration samples, the alternative estimates of
equating constants developed for the GGUM may be reasonably similar. Nonetheless, even in
the large sample conditions, the estimates produced by the ICC generally showed a slight
advantage relative to those from the other methods. This advantage was manifested primarily. by
a slightly smaller standard error. In the small sample size conditions, the relatively greater
accuracy of estimates produced by the ICC method became more apparent. Estimates produced
by the ICC method were generally more efficient, and in the vertical equating condition, they
showed less bias than several rival estimates.

These findings are consistent with those from paét studies,of IRT equating methods for
cumulative models. Sgch studies indicate that mean-sigma and mean-mean estimates of equating
constants are generally similar to those produced by characteristic curve methods when the IRT
parameters are estimated well (Baker & Al-Kamni, 1991; Cohen & Kim, 1998). This was the case
in the large sample conditions in the current simulation. The psychometric literature also
suggests that characteristic curve methbds will be more robust than mean—sigma and mean-mean
methods when some item parameter estimates are deviant (i.e., when outliers are present; Baker
& Al-Kami, 1991; Stocking & Lord, 1983). The current simulation used only 300 simulees in
the small sample conditions, and Roberts et al. (2001) have previously shown that samples of this
size lead to relatively inaccurate estimates of GGUM item parameters. Thus, the increased
accuracy noted with the ICC estimates in the small sample condition is likely due to the

robustness of the ICC method in the midst of degraded GGUM item parameter estimates.
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Meaningful differences in estimates of equating constants can occasionally occur even when
summary measures like the mean squared error or the standard error of the estimate differ only
slightly. Therefore, it is important to understand which estimation methods produce the highest
frequency of outliers. The MS1 and MS2 methods exhibited the strongest tendency to produce
extreme estimates of A, whereas the MM2 exhibited the strongest tendency to produce extreme
estimates of B. To the extent that the results of this preliminary simulation are generalizable,
then one should avoid using these methods to equate parameters of the GGUM. In contrast, the
ICC and MM1 methods produced a smaller number of outliers and can be recommended on those
grounds. The ICC method appeared to yield slightly more accurate estimates than those from the
MMI1 method, and thus, it should be the method of choice. However, in sifuations where 0
estiﬁates are not readily available, the MM1 could still be us;ad to equate item parameter
estimates.

The simulation reported in this paper was preliminary in nature. A number of interesting
variables were not explored in the simulation including the roles of itest length and the proportion
of anchor items on a given test. The present work was also limited to 6-category responses, and
it did not vary the degree of difference between 0 distributions in the vertical equating scenarios.
The ICC method evaluates differences in item characteristic curves, but differences could also be
determined at the test or category levels. Furthermore, this implementation of the ICC evaluated
characteristic curve differences at every 6; observed in eithér respondent group. Other evaluation

strategies could certainly be used (e.g., a fixed number of equally spaced 6, points). The impact

of these variables are left for future exploration.
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Conclusions

This study suggests that the item characteristic curve method provides a robust means to
estimate equating constants in the GGUM. Moreover, the preliminary simulation suggests that
the item characteristic method can provide relatively more accurate estimates than the mean-
sigma or mean-mean methods. The ability to accurately equate GGUM parameter estimates
should facilitate the development of altemative test forms and item banks in situations where
responses to questionnaire items unfold. This, in turn, will make other applications such as
computerized adaptive attitude testing more practical; especially if item banks are shared among
social science researchers. The development of sound eqﬁating methods for the GGUM is a

fundamental step in the pursuit of these benefits.
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Appendix
Let the loss function be defined as:
Q E Qlt Q21
1 4 J, , (33)
E E [Ei,Z(éjz,Z)—Ei,l( 21)] +): [ i, 1( Ei,2(6j1,12)} ’
i=1 Ja=1 7=
where [ is the number of common items across the two calibrations, J; is the number of
respondents in the first calibration sample and J, is the number of respondents in the second
calibration sample. The partial derivative of the loss function with respect to A is equal to:
0 0
30 _ E %, %% .. (34)
04 =1 \ 04 04 .
where
30,, & ¢ 0P, 6, 5
ol S -2 [ é E ] z . 2 5 35
and
90, J c. 0P, 2(é 12)
{2 6, )-E I (36)
The partial derivative with respect to B is equal to:
L [ 8Q,, 0Q,,
0 _y | %, %) L)
oB i1\ OB oB

where
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ani _ 2 _ < aPtz 1(e ,21)
R KEUR RO 21)][§ @ | 9
and

aQ i . A A < aPtz 2(e ,12)

T '2[Em“’m>‘Ew(ew>][§2—73— ] >

Consequently, these calculations depend on particular partial derivatives of the category
probability functions given in the right most terms of Equations 35, 36, 38, and 39. Each
of these partial derivatives will be determined below.

The following definitions will be useful for calculating the partial derivatives of the category

probability function: .
bl.,1=exp o z(A6j2,2+B—6,.,1)— rik’l}) , (40)
| k=0
b, =exp| o , W(Aéj2,2+B_6i,1)_ZTik,l” g (1)
I k=0
8 -B :
b, ,=exp| @, , Z(L'axyz - Tik,2 ’ “2)
L A k=0
& -B w '
. ,1
b, ,=exp}-a , W[h— -9, , 'E Tik2 || o “3)
I A k=0
¢, =exp| o | (M—z)(A9j2,2+B—6;.,l)—E rik’l]) , (44)
L k=0
& =exp| a (M—w)(A9j2,2+B—6i,1)—E rik’l}) , 45)
I k=0
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6  -B 2
€2 =exp[ o 5 (M—z)[ el 6,.,2 —E Tik.2 , (46)
A k=0
and
6.  -B W
€2 =€XP| O; , (M'W)[ —j% _6;',2) —1:2—; Yik,2 || “7)

With these definitions in place, the partial derivatives of the category probability functions can be
calculated as follows:

: aPiz, 1(61'2,21)
oA

cC
=[ ( (bi,lz+ci,1(M—z))[ >[5, +c~,.,1])

w=0
c . - : C
- (b, +Ci,1)( 2) [bi,1W+6i,1(M_W)]) ]ai,léjz,Z (48)
c 2
/(Z()[Ell+cll]) °
dP,, (é ) c.
# [[ (6,2 +¢, ,(M~2)) ( ;‘0 (6, ,+¢ ,]

c -a .0 ,-B
- 12+Cz 2)[2(:) b,2W+6i,2(M"W)]]) al’Z(jl’l ))](49)

C 2
/(E[bi,2+6i,2]) )
w=0
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aPiz l(ej2 21)

C
,aB , =[((b,’,1z+ci,l(M—Z))(§[b~i,1+6"’1])

0

c
- ,1+,1)(E b',1W+C~i,1(M“W)]))°‘ (50)
w=0
C 2
/[Eo[gi,l+6i,l]) )
and
aPl.z,(G ) c
%:{[ (bi,zz+ci,2(M—z)) [ Z% [bl,,2+c~i,2]]
& o - I
“G e )| 2 [h wE (M -W)] — (51)
w=0 '

c 2
/[ zo [b~i,2+6i,2]) ‘

Implementation of the Newton-Rapshon solution given in Equation 31 also involves the
inversion of the matrix of second order partial derivatives of Q with respect to both A and B.
Because the solution for 4 and B is based on a nonlinear least squares method, the second order
partial derivatives can be approximated using the first order partial derivatives (Press,

Teukolsky, Vetterling & Flannery, 1992). This is accomplished as follows:

Q
N

W

L
.
~

u
_
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J‘ . . 2
> [ ) z_aP””-(é_h"z)) ) . (53)
Ji=1 z=0

+

04

B34 94daB o

2 (6 0. )
82Q _ 82Q ) d ’ [ ¢ ZaPlZ,l(éjz,zl)][ < Zapzz,l( 12,21)
Z[[E 5w & w

(4
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Table 1. Means and standard deviations of alternative equating constant estimates by

sample size and equating condition. Standard deviations are given in parentheses below each

mean value.
Horizontal Equating Condition
A B
N ICC_ MS1 MMl MS2 MM2 ICC MS1 MMI MS2 MM2
300 998 1.002 .998 1.009 N/A .007 .004 .003 .014 .001
(.020) (.070) (.040) (.072) N/A (.023) (.040) (.046) (.047) (.079)
1000 997 999 1001 1.003 N/A -002 -.003 -.002 -.001 -.001
(.009) (.030) (.017) (.031) N/A (.010) (.020) (.022) (.016) (.045)
Vertical Equating Condition
A | B
N ICC_ MS1 MMl MS2 MM2 ICC m_l: MMl MS2 MM2
300- 1.240 1246 1250 1.214 N/A 505 539 536 497 545
(.021) (.097) (.048) (.111) N/A (.053) (.093) (.082) (.111) (.128)
1000 1.240 1.241 1.240 1.236 N/A S120 522 523 517 523

(.015) (.025) (.025) (.024) N/A

(.033) (.040) (.040) (.038) (.054)
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Figure Captions
Figure 1. Mean squared error for A (top panel) and B (bottom panel) by calibration sample
size and type of estimate. |
Figure 2. Scatterplots of 4 by replication and type of estimate. The horizontal reference line
on each vertical axis indicates the true value of A.
Figure 3. Scatterplots of B by replication and type of estimate. The horizontal reference line

on each vertical axis indicates the true value of B.
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